一种基于RBF神经网络优化算法在入侵检测中的应用  

AN OPTIMIZATION ALGORITHM BASSED ON RBF NEURAL NETWORK AND IT'S APPLICATION

在线阅读下载全文

作  者:周刚[1] 黄咏芳[1] 张德存[1] 许广山[2] 

机构地区:[1]海军航空工程学院系统科学与数学研究所,山东烟台264001 [2]山东工商学院数学与信息科学学院,山东烟台264001

出  处:《山东师范大学学报(自然科学版)》2013年第2期33-36,共4页Journal of Shandong Normal University(Natural Science)

基  金:海军航空工程学院青年科研基金资助项目(4142D22).

摘  要:入侵检测系统是当前信息安全领域的研究热点,在保障信息安全方面起着重要的作用.笔者对原有的基于RBF神经网络的入侵检测模型进行改进并给出了设计思想.该模型能将入侵检测系统的两种检测技术——误用检测和异常检测有效地结合起来,使用两层RBF神经网络训练模块,三层训练机制,在训练时间方面有较大的优势,并能实时地检测到新型攻击.Intrusion Detection System is one of the hot research topics in the current field of information security, since it plays a crucial role in ensuring information security. In this paper, a new model is put forth with improvements of the Original IDS model based on RBFNN ( Radial Basis Functional Neural Network). The new model can effectively integrate the two detection technologies of IDS, i. e., misuse detection and anomaly detection. With two layers of RBF neural network training module and three layers of training mechanism, the new system has an advantage in training time, and is able to have a real - time detection of new intrusions.

关 键 词:网络安全 入侵检测系统 神经网络 径向基函数 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象