基于内膜原理的多轴转向无静差跟踪鲁棒控制  被引量:1

Robust Tracking Control of Multi-steering Vehicle with No Static Error Based on IMP

在线阅读下载全文

作  者:王吉华[1,2] 魏民祥[1] 李玉芳[1] 

机构地区:[1]南京航空航天大学能源与动力学院,南京210016 [2]山东理工大学交通与车辆工程学院,淄博255049

出  处:《机械科学与技术》2013年第6期785-790,共6页Mechanical Science and Technology for Aerospace Engineering

基  金:国家自然科学基金项目(51005113)资助

摘  要:为提高多轴转向车辆跟踪控制精度及其抗干扰能力,提出基于内模原理(IMP)的无静差跟踪鲁棒控制方法。建立多轴转向二自由度线性模型,并基于IMP进行无静差跟踪控制器设计,利用极点配置方法求解控制器;对某三轴转向车辆进行跟踪控制器设计,并和PID控制对比仿真,在一定干扰下,内膜控制跟踪横摆角速度阶跃和斜坡信号的稳态误差均为零,调节时间在0.09 s以内,而PID控制稳态误差最大0.2°/s,调节时间最大为0.6 s。结果表明控制算法能使横摆角速度无静差跟踪参考输入,并具有一定的鲁棒性,且侧偏角响应也得到改善,跟踪效果明显优于PID控制,提高了多轴转向的操纵稳定性和安全性。To enhance the tracking control accuracy and disturbanceresistance of a multisteering vehicle, the pa per proposes a method for robust control of multisteering vehicle with no static error tracking based on the Internal Model Principle (IMP). The linear model of the multisteering vehicle with two degrees of freedom is established. The tracking controller is designed and solved with the pole assignment method. The tracking control system of a certain threewheel steering vehicle is designed, and its simulation is carried out; the simulation results are com pared with those of the PID control method. With some disturbance, the internal model controller tracks the contin uous step and the ramp signal respectively. The tracking results show that the static errors for both are zero and that their settling time is within 0.09 s. With the PID control method, the maximum static error is 0.2 s and the max imum settling time is 0.6 s. The tracking results also indicate that the robust control method can make yaw rate track its reference input with zero static error and has certain robustness compared with the PID control method. Meanwhile, the response of sideslip angle is improved.

关 键 词:多轴转向车辆 二自由度线性模型 内膜原理 无静差跟踪控制 鲁棒性 

分 类 号:U461.1[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象