检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学电子工程学院,四川成都610054 [2]攀枝花学院,四川攀枝花617000 [3]西华大学电气信息学院,四川成都610039
出 处:《电路与系统学报》2013年第2期79-85,共7页Journal of Circuits and Systems
基 金:四川省青年科技基金(2010JQ0041);四川省应用基础研究项目(2011JY0115)
摘 要:针对非线性、非高斯系统中的粒子滤波算法存在粒子权值退化和重采样后引起样本枯竭问题,提出一种自适应差分演化粒子滤波算法。用一种自适应参数控制策略对差分演化算法的参数进行控制,并以此代替粒子滤波中的重采样算法。通过对状态更新后的粒子做自适应差分变异、自适应杂交和选择等优化操作,利用权值大小选出下一时刻的粒子集合。实验表明,该算法能有效缓解粒子权值退化和样本枯竭问题,缩短算法运行时间,提高估计精度,同一般的差分演化粒子滤波算法相比,状态估计的精度更高。In this paper,a new adaptive differential evolution particle filter algorithm is proposed for the phenomenon of sample degeneracy and sample impoverishment which is caused by resampling in particle filter of the non-linear and non-Gaussian systems.It has insteaded the re-sampling algorithm by the differential evolution algorithm which is controlled by a kind of adaptive parameter Control strategy.Then operate these samples which have been updated by state with adaptively mutating,adaptively crossover and adaptively selecting,then select the set of particle by particle weights which will been used in the next time.Simulation results show that it can effectively relieve weights degeneracy and increase the diversity of particles,making the running time more shorten and improved the estimation precision,the precision of state estimation is higher than that of the general differential evolution of particle filter algorithm.
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3