检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢艳超[1] 温卫宁[1] 赵彪[1] 郑燕[1] 史雪飞[1]
出 处:《中国电力》2013年第5期94-98,共5页Electric Power
摘 要:电网工程设备价格的非线性和非平稳性特征导致其价格预测难度大、预测精度低,针对这一问题,建立了EMD-SVM预测模型。利用经验模态分解(EMD)将历史价格分解为平稳的、周期波动的若干价格分量,并以此作为输入,对各分量进行基于支持向量机(SVM)的价格预测,最后将各预测分量叠加得到预测值。以180 MVA主变的历史数据为样本,通过与SVM的预测结果进行对比及误差分析,验证了EMD-SVM预测方法能够有效提高电网工程设备价格的预测精度,对于工程造价管控和设备招投标具有一定的参考价值。The equiprnent price of a grid project is nonlinear anti non-slationary, and it is diffieull to he estimated accurately. Therefore, the EMD-SVM model is huih In divide the historical prices into smooth and perindieally-fluetuating components with empirical mode deeomposilion (EMD). Take these components as input, their forecast values are obtained with support vector machine (SVM), and then these wdues are superimposed tn gain lhe final forecast price. The comparison between the forecast price and the historical data of a 180-MVA transformer and the error analysis are carried out, which indicates that the EMI)-SVM-based forecastion can effectively improve the accuracy of the equipment price forecast and is helpful for prnject cost control and equipment bidding.
关 键 词:电网工程设备价格 经验模态分解 支持向量机 价格预测
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.208