检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张圣贵[1]
出 处:《福建师范大学学报(自然科学版)》2000年第3期1-6,共6页Journal of Fujian Normal University:Natural Science Edition
基 金:福建省自然科学基金资助项目!( A970 1 4 )
摘 要:主要证明以下结论 :( 1 )若 {αβα|α,β∈ B}是右忠实的双模同态族 ,则 R是局部左自内射环当且仅当 {Rα}α∈ A是左自内射环族且对任意α,β∈ A,μαβ∶ Rαβ→ Hom Rβ( Rβα,Rβ)是同构当且仅当对 A的任意非空有限子集 B,作为左 e BRe B-模 ,有 e BRe B e BE( R) e B;( 2 )若 {αβα|α,β∈ A}是右忠实的双模同态族 ,{ββγ|β,γ∈A}是左忠实的双模同态族 ,则 R是局部左 PF环当且仅当每一个 Rα都是左 PF环 ,α∈ A;( 3 )若 {αβα,αββ|α,β∈ A}是双模同构族 ,则 ( i) R是局部左 Artin环 (局部左 Noether环 )当且仅当 Rα是左 Artin环 (左 Noether环 ) ,α∈ A;( ii) R是局部 QF环当且仅当 {Rα}α∈ A是 QF环族且对任意α,β∈ A,μαβ∶ Rαβ→ Hom Rβ( Rβα,Rβ)Proves the following results:(1) If { αβα |α,β∈B} is a family of right faithful bimodule homomorphisms, then R is a local left self injective ring if and only if {R α} α∈A is a family of left self injective rings and for every α,β∈A,μ αβ ∶R αβ → Hom R β (R βα ,R β) is an isomorphism if and only if for every nonemty subset B of A , e BRe Be B(R)e B as a left e BRe B module .(2) If { αβα |α,β∈A} is a family of right faithful bimodule homomorphisms,{ ββγ |β,γ∈A} is a family of left faithful bimodule homomorphisms, then R is a local left PF ring if and only if R α is a left PF ring for every α∈A .(3)If { αβα , αββ |α,β∈A} is a family of bimodule isomomorphisms, then(i) R is a local left Artinian(Noetherian) ring if and only if R α is a left Artinian(Noetherian) ring for every α∈A.(ii) R is a local QF ring if and only if {R α} α∈A is a family of QF rings and for all α,β∈A,μ αβ ∶R αβ → Hom R β (R βα ,R β) is an isomorphism. [WT5HZ]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49