检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丽[1,2] 李艳梅[3] 孙宝忠[1] 余群力[2]
机构地区:[1]中国农业科学院北京畜牧兽医研究所,北京100193 [2]甘肃农业大学食品科学与工程学院,甘肃兰州730070 [3]甘肃农业大学信息科学与技术学院,甘肃兰州730070
出 处:《肉类研究》2013年第4期10-14,共5页Meat Research
基 金:国家公益性行业(农业)科研专项(201203009);甘肃省青年科技基金项目(1107RJYA064);国家现代农业(肉牛牦牛)产业技术体系建设专项(CARS-38)
摘 要:采用图像处理技术自动估算牛肉眼肌横切面特征值,为基于计算机视觉的牛肉品质自动分级检测奠定基础。以牛胴体6~7肋横断面图像为试验材料,采用边缘检测、二值化处理技术等,运用VisualC++6.0编程语言,对牛肉眼肌的眼肌面积、脂肪、肌肉总面积比、脂肪分布均匀度、眼肌圆度、肌肉和脂肪色度值5个特征参数进行特征提取和检测。结果表明:经测量所得的眼肌面积越大,圆度越大,肌肉和脂肪色度值越高、大理石纹密度分布均匀的牛肉品质越好,相反,眼肌面积小、圆度小、肌肉和脂肪色度值越低、密度分布不均匀的牛肉品质低。该设计可有效计算眼肌面积和特征参数,能代替常规分级方法,实现牛肉质量等级的自动判别。Automatic eigenvalue estimation of beef ribeye cross-section images through image processing lays the foundation for automatic beef quality grading based on computer vision technique. Digital images of the carcass cross section between the sixth and seventh ribs were subjected to feature extraction and detection of characteristic parameters (ribeye area, fat area ratio, total muscle area ratio, average fat distribution, the roundness of ribeye area and ribeye muscle and fat colors) by edge detection and binarization based on Visual C ++ 6.0. Our results showed that larger ribeye areas had better roundness, higher chromatic values of muscle and fat and more uniform distribution of marbling, indicating better quality. On the contrary, lower-quality ribeyes had smaller areas, lower roundness values and chromatic values of muscle and fat and uneven distribution of marbling. The described design enables effective calculation of ribeye areas and characteristic parameters and consequent automatic identification of beef quality grades and can be an alternative to routine ~radin~ methods.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171