检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁建睿[1] 黄剑华[1] 刘家锋[1] 张英涛[1]
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
出 处:《自动化学报》2013年第6期861-867,共7页Acta Automatica Sinica
基 金:国家自然科学基金(61073128;61100097;60973077)资助~~
摘 要:利用全局特征对超声图像进行描述具有一定的局限性,而且对图像进行手工标注的成本过高,为解决上述问题,本文提出了一种利用局部特征描述超声图像,并结合多示例学习对超声图像进行分类的新方法.粗略定位图像中的感兴趣区域(Region of interest,ROI),并提取局部特征,将感兴趣区域看作由局部特征构成的示例包,采用自组织映射(Self-organizing map,SOM)的方法对示例特征进行矢量量化,采用Bag of words方法将示例特征映射到示例包空间,进而采用传统的支持向量机对示例包进行分类.本文提出的方法在临床超声图像上进行了实验,实验结果表明,该方法具有良好的泛化能力和较高的准确性.The method to describe ultrasound images using global features has some limitation. And it has a high cost to manually annotate the region of interest (ROI). To solve the above problems, local features are used to describe ultrasound images. A multi-instance learning method for ultrasound image classification is proposed. The ROI is roughly located and local features are extracted. The ROI is considered as a bag which is composed of local features. The self-organizing map (SOM) method is used for vector quantization and the bag of words method is used to map instance features to bag features. Then the classical support vector machine is used to classify the bags. The method proposed by this paper is tested by clinical ultrasound images. The results show that the method has a good generalization ability and has a high accuracy.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.17.175