基于自组织邻域结构的微粒群算法  

Particle Swarm Optimization Based on Self-organizing Neighborhood

在线阅读下载全文

作  者:徐卫滨[1] 张王侠[1] 张汝鸿[2] 

机构地区:[1]太原科技大学,太原030024 [2]中国石化燃料油销售有限公司,北京100029

出  处:《太原科技大学学报》2013年第3期190-193,共4页Journal of Taiyuan University of Science and Technology

摘  要:通过构建自组织邻域结构来保持群体多样性,以克服微粒群算法(PSO)易局部收敛的缺点。模拟动物群体趋利避害的行为选择机制,以微粒的适应值择优建立自组织邻域结构的连接。实验结果表明,基于自组织邻域结构的微粒群算法(SONPSO)优于微粒群算法、基于环形结构和动态环形结构的微粒群算法。A Self-organizing neighborhood was constructed in order to maintain the diversity of population and overcome the defect of easy local convergence of PSO. The preferential attachment of fitness was established, which sim- ulates individuals that are willing to interact with better but not worse animal groups. Simulation results show that particle swarm optimization based on self-organizing ne zation, particle swarm optimization based on ring lattice tice. ighborhood (SONPSO)is superior to particle swarm optimi- and particle swarm optimization based on dynamic ring lattice.

关 键 词:微粒群算法 适应值 自组织邻域结构 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象