苹果采摘机器人中的图像配准技术  被引量:19

Application of image registration technology in apple harvest robot

在线阅读下载全文

作  者:周薇[1] 冯娟[1,2] 刘刚[1] 马晓丹[1] 

机构地区:[1]中国农业大学现代精细农业系统集成研究教育部重点实验室,北京100083 [2]河北农业大学信息科学与技术学院,保定071001

出  处:《农业工程学报》2013年第11期20-26,I0001,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金资助项目(31071333)

摘  要:为了减少自然环境下的光线干扰,采用一个彩色相机和一个深度相机获取目标物的图像,利用多源传感器信息融合与互补方法,实现多目标图像的精确配准。基于TOF(time of flight)技术的PMD(polarization mode dispersion)相机,能实时获得强度图像和深度信息。以苹果树为研究对象,采用Harris检测提取特征点,在归一化互相关系数法的基础上运用邻域的支持强度实现了PMD图像与彩色图像的同名点配准。对自然场景中共50组图片进行试验验证,该方法顺光条件下正确匹配率达到85.75%,逆光条件下的匹配率是79.57%,能满足光线变化的图像精确配准的要求。To reduce the effect of natural light, this paper provides a novel apple harvest robot vision system, which integrates a new technique that combines a color-camera system with a PMD-camera. A registration method of color-camera and the PMD-camera is presented to find precise corresponding color pixel information with range distance data from the PMD-camera. The registration algorithm used in the article has the following steps: feature extraction, feature matching, coordinates transformation and interpolation, and feature extraction and feature matching are the key technologies of all. Firstly, as large portions of corners in multi-source images have high correlation, Harris corner detection based on differential operation and autocorrelation matrix was chosen as the method of extracting image features. Secondly, the Normalized Correlation Coefficient (NCC) algorithm was used to realize many-many matching relationships between color images and PMD images, which is a pre-alignment stage. NCC relies on gray information around the corner and has good ability to noise. Thirdly, combined with the information of corners around corresponding points, the refinement stage is completed by way of calculating the support strength of its neighbor points. Finally, the article gets the final registration image after affine transformation and bilinear interpolation. Fifty groups of apple tree pictures that were taken in a natural scene are used to verify the algorithm, including 28 groups of pictures in front lighting and 22 groups of pictures in backlighting. What’s more, statistical results of contrast test with different algorithm used in previous articles is obtained, in which each dataset shows minimum, mean, and standard deviation values of matching rate. The experimental result shows that, the algorithm used in this paper is obvious better than previous articles. The matching rate reaches85.75% in front lighting condition and 79.57% in backlighting condition, which can meet the requirements for accurate image regi

关 键 词:机器人 图像处理 图像配准 PMD相机 

分 类 号:TP242.62[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象