论Sylow p-子群循环的p^nq^3阶群的构造  被引量:11

On the structures of groups of order p^nq^3 with cylic Sylow p-subgroups

在线阅读下载全文

作  者:陈松良[1] 

机构地区:[1]贵州师范学院数学与计算机科学学院,贵州贵阳550018

出  处:《东北师大学报(自然科学版)》2013年第2期35-38,共4页Journal of Northeast Normal University(Natural Science Edition)

基  金:贵州省自然科学基金资助项目(2010GZ77391)

摘  要:设p,q为奇素数,且p>q.对Sylow p-子群循环的pnq3阶群进行了完全分类,并获得了其全部构造:(ⅰ)当q不整除(p-1)且p不整除(q2+q+1)时,G恰有5个彼此不同构的类型;(ⅱ)当q不整除(p-1)但p整除(q2+q+1)时,G恰有6个彼此不同构的类型;(ⅲ)当q整除(p-1)但q2不整除(p-1)且p不整除(q2+q+1)时,G恰有q+10个彼此不同构的类型;(ⅳ)当q整除(p-1)且p整除(q2+q+1)但q2不整除(p-1)时,G恰有q+11个彼此不同构的类型;(ⅴ)当q2整除(p-1)但q3不整除(p-1)时,G恰有q+12个彼此不同构的类型;(ⅵ)当q3整除(p-1)时,G恰有q+13个彼此不同构的类型.Let p,q be odd primes such that pq,and G be groups of order pnq3 with cyclic Sylow p-subgroups.In this paper,it is discussed that the isomorphic classification of G,and their structures are completely described.We have showed that:(ⅰ) If q doesn't divide(p-1) and p doesn't divide(q2+q+1),G has 5 nonisomorphic structures;(ⅱ) If q doesn't divide(p-1) and p divides(q2+q+1),G has 6 nonisomorphic structures;(ⅲ) If q divides(p-1) and q2 doesn't divide(p-1) and p doesn't divide(q2+q+1),G has q+10 nonisomorphic structures;(ⅳ) If q divides(p-1) and q2 doesn't divide(p-1) and p divides(q2+q+1),G has q+11 nonisomorphic structures;(ⅴ) If q2 divides(p-1) and q3 doesn't divide(p-1),G has q+12 nonisomorphic structures;(ⅵ) If q3 divides(p-1),G has q+13 nonisomorphic structures.

关 键 词:有限群 同构分类 群的构造 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象