检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈松良[1]
机构地区:[1]贵州师范学院数学与计算机科学学院,贵州贵阳550018
出 处:《东北师大学报(自然科学版)》2013年第2期35-38,共4页Journal of Northeast Normal University(Natural Science Edition)
基 金:贵州省自然科学基金资助项目(2010GZ77391)
摘 要:设p,q为奇素数,且p>q.对Sylow p-子群循环的pnq3阶群进行了完全分类,并获得了其全部构造:(ⅰ)当q不整除(p-1)且p不整除(q2+q+1)时,G恰有5个彼此不同构的类型;(ⅱ)当q不整除(p-1)但p整除(q2+q+1)时,G恰有6个彼此不同构的类型;(ⅲ)当q整除(p-1)但q2不整除(p-1)且p不整除(q2+q+1)时,G恰有q+10个彼此不同构的类型;(ⅳ)当q整除(p-1)且p整除(q2+q+1)但q2不整除(p-1)时,G恰有q+11个彼此不同构的类型;(ⅴ)当q2整除(p-1)但q3不整除(p-1)时,G恰有q+12个彼此不同构的类型;(ⅵ)当q3整除(p-1)时,G恰有q+13个彼此不同构的类型.Let p,q be odd primes such that pq,and G be groups of order pnq3 with cyclic Sylow p-subgroups.In this paper,it is discussed that the isomorphic classification of G,and their structures are completely described.We have showed that:(ⅰ) If q doesn't divide(p-1) and p doesn't divide(q2+q+1),G has 5 nonisomorphic structures;(ⅱ) If q doesn't divide(p-1) and p divides(q2+q+1),G has 6 nonisomorphic structures;(ⅲ) If q divides(p-1) and q2 doesn't divide(p-1) and p doesn't divide(q2+q+1),G has q+10 nonisomorphic structures;(ⅳ) If q divides(p-1) and q2 doesn't divide(p-1) and p divides(q2+q+1),G has q+11 nonisomorphic structures;(ⅴ) If q2 divides(p-1) and q3 doesn't divide(p-1),G has q+12 nonisomorphic structures;(ⅵ) If q3 divides(p-1),G has q+13 nonisomorphic structures.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15