检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学计算机学院多媒体与智能软件技术北京市重点实验室,北京100124
出 处:《北京工业大学学报》2013年第7期1059-1064,1071,共7页Journal of Beijing University of Technology
基 金:国家自然科学基金资助项目(61070117);北京市自然科学基金资助项目(4122004);北京工业大学基础研究基金资助项目(X4007999201301)
摘 要:为了提高步态识别率,在步态能量图(gait energy image,GEI)基础上,提出了基于小波包分解(waveletpacket decomposition,WPD)和完全主成分分析(two-directional two-dimensional principal component analysis,(2D)2PCA)的步态识别方法.该方法采用基于人体轮廓的GEI来解决步态数据量过大的问题,并采用WPD和(2D)2PCA进行步态特征提取,解决了已有基于小波变换的步态识别方法中高频分量丢失或维数过高问题.在NLPR步态数据库上对该方法进行了评测,并与经典方法进行了比较.实验结果表明:该方法具有更高的识别率和视角变化的鲁棒性.To improve the gait recognition rate, a gait recognition method based on wavelet packet decomposition (WPD) and two-directional two-dimensional principal component analysis ((2D)2PCA) was proposed. In the method, gait energy image (GEI) of the body silhouette was firstly adopted to solve the problem of huge gait data. And then, WPD and (2D)2PCA were used to extract features to solve the problem existing in the gait recognition method based on wavelet transform at present: high frequency component loss or high dimension problem. The Experiment evaluation was conducted on NLPR gait database and compared with classical methods. Result shows that the proposed method has a higher recognition rate and is more robust to the change of view.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.114