一种新的SAR时延补偿算法及其在组合导航中的应用  被引量:2

SAR delay compensation algorithm and its application in integrated navigation system

在线阅读下载全文

作  者:高社生[1] 谢梅林[1] 赵飞[1] 

机构地区:[1]西北工业大学自动化学院,西安710072

出  处:《中国惯性技术学报》2013年第3期381-385,396,共6页Journal of Chinese Inertial Technology

基  金:国家自然科学基金(61174193);陕西省自然科学基金(NBYU0004)

摘  要:针对SAR图像匹配及定位需要耗用不等的计算时间而造成的量测不等间隔输出和量测信息滞后问题,提出一种新的SAR时延补偿算法。该算法在标准卡尔曼滤波(KF)基础上,当SAR有量测信息生成时,根据多模型方法进行量测预测,利用预测值修正SINS状态;而SAR无量测信息输出时,通过插值方法生成量测信息来改善系统滤波精度。仿真结果表明,采用基于多模型量测预测的KF算法可以将位置误差由45 m减小到10 m以内,航向角稳态误差值小于5.8";而在此基础上叠加插值预测算法可以将位置误差进一步控制在6 m以内,航向角稳态误差小于4.7",证明了本文提出的算法能够有效补偿SAR的随机时延并提高组合导航系统的解算精度。The image matching and positioning of SAR need non-constant computation time, which result in unequal interval and delay characters of measurement output. In view of measurement prediction thoughts, a new algorithm is proposed to compensate the delay of SAR, which is based on the basic Kalman filtering. As the measurement information of SAR generated, the measurement prediction is made by a multiple model method, then the predicted value is used to correct the state of SINS; and when there is no measurement output, the measurement prediction is generated by the interpolation method and used to improve the system filtering accuracy. The simulation results are as follows: the position error can be reduced to 10 m from 45 m and the heading angle error is less than 5.8" when using the improved KF algorithm which is based on multi-model measurement prediction method. On the premise of the above algorithm, and by adding on the interpolation prediction algorithm, the position error is less than 6 m and the heading angle accuracy is superior to 4.7", which prove that the proposed algorithm can effectively compensate the random delay of SAR and improve the calculating precision of the integrated navigation system.

关 键 词:组合导航 SAR时延补偿 量测滞后 量测预测 

分 类 号:U666.1[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象