关于Sylow子群皆交换的p^2q^3阶群的构造  被引量:3

On the Structures of Groups of Order p^2q^3 with Abelian Sylow Subgroups

在线阅读下载全文

作  者:陈松良[1] 

机构地区:[1]贵州师范学院数学与计算机科学学院,贵州贵阳550018

出  处:《武汉大学学报(理学版)》2013年第3期295-300,共6页Journal of Wuhan University:Natural Science Edition

基  金:贵州省自然科学基金资助项目(2010GZ77391)

摘  要:设p,q为奇素数,且p>q.本文对Sylow子群皆交换的p2q 3阶群进行了完全分类并获得了其全部构造:1)当q(p2-1)且p(q2+q+1)时,G恰有6个不同构的类型;2)当q(p-1)但p|(q2+q+1)时,G恰有8个不同构的类型;3)当q|(p-1)但q2(p-1)且p(q2+q+1)时,G恰有q2+19个不同构的类型;4)当q|(p-1)且p|(q2+q+1)但q2(p-1)时,G恰有q2+21个不同构的类型;5)当q2|(p-1)但q3(p-1)时,G恰有2q2+q+24个不同构的类型;6)当q3|(p-1)时,G恰有(q3+5q2+2q+52)/2个不同构的类型;7)当q|(p+1)但q2(p+1)时,G恰有10个不同构的类型;8)当q2|(p+1)但q3(p+1)时,G恰有12个不同构的类型;9)当q3|(p+1)时,G恰有13个不同构的类型.Let p, q be odd primes such that p〉q, and G be groups of order p2q3 with Abelian Sylow subgroups. In this paper, it is discussed that the isomorphic classification of G, and their structures are completely determined. We have showed that: 1) If q doesn't divide (p2 -1) and p doesn't divide (q2+q+1), G has 6 nonisomorphic struc- tures; 2) If q doesn't divide (p-1) and p divides (q2+q+1), G has 8 nonisomorphic structures; 3) If q divides (p -1) and q2 doesn't divide (p-1) and p doesn't divide (q2 +q+1), G has (q2 419) nonisomorphic structures; 4) If q divides (p-l) and q2 doesn't divide (p-1) and p divides (q2 +q+1), G has (q2 +21) nonisomorphie structures; 5) If q2 divides (p-1) and q3 doesn't divide (p-1), G has 2q2 +q+24 nonisomorphie structures; 6) If q3 divides (p-1), G has (q3 +5q2 +2q+52)/2 nonisomorphic structures; 7) If q divides (p+1) and q2 doesn't divide (p+1), G has 10 nonisomorphie structures; 8) If q2 divides (p+1) and q3 doesn't divide (p++), G has 12 nonisomorphic struc- tures; 9) If q3 divides (p^-l), G has 13 nonisomorphic structures.

关 键 词:有限群 同构分类 群的构造 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象