检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学电气工程学院,吉林吉林132012 [2]吉林大学通信工程学院,吉林长春130025
出 处:《智能系统学报》2013年第2期162-167,共6页CAAI Transactions on Intelligent Systems
基 金:东北电力大学博士基金资助项目(BSJXM-201016)
摘 要:针对多机器人系统领域中复杂环境下的稳定协同觅食问题,利用粒子群优化算法规划出多机器人中心位置在相应目标下的最优光滑路径.在此基础上设计了相应的分布式控制策略,并对该控制策略下多机器人系统运动的稳定性和内聚性进行了分析,证明了群体内部平均动能能够收敛至给定值,进而保证了多机器人系统运动规模的可控性,且不发生碰撞.仿真试验结果表明,在该控制策略下,多机器人系统能够在复杂的环境下有效地实现稳定觅食行为.Aiming at the stable cooperative foraging problems of the multi-robot system in complex environments, the Particle Swarm Optimization (PSO) algorithm was adopted in this paper to plan an optimal smooth path of the center of multi-robot system in corresponding objects. In order to plan an optimal smooth path of the center of multi-robot system in corresponding objects, it was necessary to examine the system in great detail. And on this basis, a corresponding distributed controller was designed, and a stabilization and cohesion analysis of the multi-robot moving was performed. The control strategy, proved the swarm internal average kinetic energy did converge to the given value, and the multi-robot system moving scale was under control, indicating no collisions. Experiments have been completed and verified the designed controller. The results show that the proposed controller enables the multi-robot system to reach a stable foraging behavior in complex environments.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15