检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东莞理工学院计算机学院,广东东莞523808
出 处:《智能系统学报》2013年第3期266-270,共5页CAAI Transactions on Intelligent Systems
基 金:广东省自然科学基金资助项目(9151170003000017);东莞市科技计划资助项目(2012108102027)
摘 要:为了解决支持向量回归机多项式光滑函数的逼近精度问题,根据该类光滑函数的复杂性,提出五步求的基本思路:首先把多项式光滑函数的逼近精度问题表示为一个求逼近函数的最大值问题,接着证明这个逼近函数是一个对称函数,然后分别求出逼近函数在[0,ε]和(ε,+∞)上的最大值,最后对这2个最大值进行比较,得出光滑函数的逼近精度.通过实例计算,结果证明了该方法的有效性和正确性,解决了无穷多个多项式光滑函数的逼近精度问题,为光滑支持向量回归机提供了基本的理论支持.In order to solve the problem of polynomial smoothing function' s approximation accuracies for support vector regression, the researcher proposes to solve the problem utilizing a five step approach, according to the com- plexity of smooth functions. The first step, examines the problem of the approximation accuracy in the polynomial smoothing function represented by solving the maximum value of an approximation function; second, the function was verified to be a symmetric function; third, the maximum values of the approximation function were derived re- spectively at the intervals [0,ε] and (ε, + ∞) ; fourth, the two maximum values were compared, and finally the approximation accuracy was obtained. Through the calculation with examples, the correctness and effectiveness of the method was validated, and the approximation accuracy problem of the infinite polynomial smoothing functions was systematically solved in this paper, which offers basic theoretical support for smooth support vector regression.
关 键 词:支持向量回归机 多项式光滑函数 逼近精度 对称函数
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38