检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西北大学学报(自然科学版)》2013年第3期397-399,共3页Journal of Northwest University(Natural Science Edition)
基 金:国家自然科学基金资助项目(11104218);陕西省自然科学基础研究计划基金资助项目(2010JZ001);陕西省自然科学基金资助项目(2010JZ001);陕西省留学人员科技活动择优基金资助项目(BSL11002)
摘 要:为解决脉冲激光激发均匀半导体材料ZnO纳米线中所产生的非平衡载流子在一维情况下时间、空间的演化理论模型。采用级数展开法,求解非平衡载流子连续性方程,确定载流子随坐标和时间变化的解析解,并结合溶液法制备出的ZnO纳米线阵列,讨论在激发波长360纳米的激光激发下非平衡载流子浓度时空关系。所提出的级数展开求解法与经典的傅里叶方法,以及本征函数法得到的结果是一致的,并可用于确立脉冲激光诱导的非平衡载流子浓度扩散动力学。In order to understand the process of non-equilibrium carriers induced by optical simulation, the diffu- sion and drift of this kind of carrier is discussed and theoretically analyzed for the ZnO nanowire semiconductor with 3.44ev of the band gap. The series expansion method is employed to illustrate the spatial and time dependence of the diffusion of the carriers in the 1-D homogeneous semiconductor. The ZnO nanowire array is successfully pre- pared through solution chemical synthesis, and is discussed with the theoretical solution for the distribution of the excess carrier under - 360nm laser. It is found that the series expansion method, consistent with the Fourier meth- od and eigenvalue equation, demonstrates that the diffusion as the function of space and time is successfully solved by our method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7