检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安飞行自动控制研究所,陕西西安710065
出 处:《电机与控制学报》2000年第3期171-174,187,共5页Electric Machines and Control
摘 要:复杂不规则系统的语言建模构成了许多控制/决策系统的核心问题,模糊逻辑是进行语言建模最有效的方法之一。本文介绍了一种基于模糊逻辑、神经网络和遗传算法的语言建模方法,并给出了新型的混合学习算法,即:首先由自组织算法确定出模糊神经网络的初始隶属度函数;其次由最大匹配因子学习算法完成模糊规则确定;最后提出了一种改进的遗传算法用来优化调节已经获得的隶属度函数。通过具体的仿真实例说明了所提出的建模方法在动态系统辨识中的有效性。A method for linguistic modeling based on fuzzy logic, neural networks and genetic algorithm is introduced in this paper, and a new hybrid learning algorithm is proposed: Firstly, the initial membership functions of the fuzzy neural network are found by using the self-organization feature map algorithm; then the maximum matching-factor algorithm is used to determine the fuzzy rules, finally, a modified genetic algorithm is presented and used for optimized tuning of the membership functions obtained. A simulation example demonstrates the efficiency of the proposed scheme.
分 类 号:O231.3[理学—运筹学与控制论] TP183[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117