基于遗传算法优化的支持向量机品位插值模型  被引量:14

Ore grade interpolation model based on support vector machines optimized by genetic algorithms

在线阅读下载全文

作  者:李翠平[1] 郑瑶瑕[1] 张佳[1] 侯定勇[1] 

机构地区:[1]北京科技大学金属矿山高效开采与安全教育部重点实验室,北京100083

出  处:《北京科技大学学报》2013年第7期837-843,共7页Journal of University of Science and Technology Beijing

基  金:国家自然科学基金资助项目(51174032);教育部新世纪优秀人才支持计划资助项目(NCET-10-0225);中央高校基本科研业务费专项(FRF-TP-09-001A)

摘  要:将支持向量机(SVM)和遗传算法(GA)集成应用到矿体品位插值问题中,利用遗传算法全局搜索的优势对支持向量机的三个关键参数——惩罚系数C、不敏感系数ε和核函数参数σ进行寻优,克服单纯支持向量机法中依靠经验确定参数的局限性.将优化参数代入到支持向量机中进行迭代训练,得到基于遗传算法参数优化的支持向量机(GA-SVM)矿体品位插值模型.以国内典型矿山的实际勘探数据为例,通过该品位插值模型计算结果与传统插值方法计算结果和矿山生产实际数据的对比分析,验证了其可行性和有效性.An approach which integrates support vector machines (SVM) and genetic algorithms (GA) was pro- posed to do ore grade interpolation. With the global searching characteristics, GA was used to select the optimal parameters of SVM, including the penalty parameter C, the insensitive coefficient ε and the kernel function parameter a, so this approach can overcome the limitation of a pure SVM method in determining parameters by experience. The optimal parameters were substituted into SVM iterative training, and then an ore grade interpolation model based on SVM optimized by GA was established. Taking an underground mine in China as an example, the feasibility and validity of the ore grade interpolation model were verified by comparing the model calculation results with the actual data of mine production and the calculation results of traditional interpolation methods.

关 键 词:采矿 矿石品位 插值 支持向量机 遗传算法 优化 

分 类 号:TD05[矿业工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象