检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李翠平[1] 郑瑶瑕[1] 张佳[1] 侯定勇[1]
机构地区:[1]北京科技大学金属矿山高效开采与安全教育部重点实验室,北京100083
出 处:《北京科技大学学报》2013年第7期837-843,共7页Journal of University of Science and Technology Beijing
基 金:国家自然科学基金资助项目(51174032);教育部新世纪优秀人才支持计划资助项目(NCET-10-0225);中央高校基本科研业务费专项(FRF-TP-09-001A)
摘 要:将支持向量机(SVM)和遗传算法(GA)集成应用到矿体品位插值问题中,利用遗传算法全局搜索的优势对支持向量机的三个关键参数——惩罚系数C、不敏感系数ε和核函数参数σ进行寻优,克服单纯支持向量机法中依靠经验确定参数的局限性.将优化参数代入到支持向量机中进行迭代训练,得到基于遗传算法参数优化的支持向量机(GA-SVM)矿体品位插值模型.以国内典型矿山的实际勘探数据为例,通过该品位插值模型计算结果与传统插值方法计算结果和矿山生产实际数据的对比分析,验证了其可行性和有效性.An approach which integrates support vector machines (SVM) and genetic algorithms (GA) was pro- posed to do ore grade interpolation. With the global searching characteristics, GA was used to select the optimal parameters of SVM, including the penalty parameter C, the insensitive coefficient ε and the kernel function parameter a, so this approach can overcome the limitation of a pure SVM method in determining parameters by experience. The optimal parameters were substituted into SVM iterative training, and then an ore grade interpolation model based on SVM optimized by GA was established. Taking an underground mine in China as an example, the feasibility and validity of the ore grade interpolation model were verified by comparing the model calculation results with the actual data of mine production and the calculation results of traditional interpolation methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.152