检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院兵器科学与技术系,山东烟台264001
出 处:《计算机工程与应用》2013年第14期267-270,共4页Computer Engineering and Applications
摘 要:针对故障诊断面临的故障样本少、非线性强、多故障处理等问题以及传统智能诊断方法存在的不足,提出了一种基于决策树(DT)和相关向量机(RVM)的智能故障诊断方法。通过构造决策二叉树,将多类分类问题分解成多个二类分类问题;在各个决策节点,利用RVM进行二类分类,从而实现RVM的多类分类。理论分析及仿真结果表明,相比支持向量机,新方法在保持高诊断正确率的同时具有更高的稀疏性和诊断效率,并且能够提供概率式输出,更具实用价值;相比OAR-RVM和OAO-RVM方法,新方法节省了训练时间,具有更高的训练效率。In view of the problems in fault diagnosis, such as small samples, nonlinear, multiple faults processing, and the defects of traditional intelligent methods, an intelligent fault diagnosis method based on Decision Tree(DT) and Relevance Vector Machine(RVM) is proposed. The DT is constructed, and the multi-class classification problem is divided into many binary classi- fication problems. RVM is used to make binary classification at every node, and then the multi-class classification of RVM is achieved. The theoretical analysis and results of application show that the proposed method has better performance in sparsity and diagnosis efficiency while keeping high accuracy compared with the traditional SVM methods, which makes it more practi- cal; and that the proposed method has a better training efficiency compared with OAR-RVM and OAO-RVM.
分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3