基于无人机的输电线路设备识别方法研究  被引量:18

Research of power transmission line equipments recognition method based on UAV

在线阅读下载全文

作  者:何思远[1,2,3] 刘刚[4] 王玲[4] 唐延东[1] 

机构地区:[1]中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳110016 [2]中国科学院大学,北京100049 [3]沈阳工程学院信息工程系,辽宁沈阳110136 [4]辽宁省电力有限公司本溪供电公司,辽宁本溪117000

出  处:《红外与激光工程》2013年第7期1940-1944,共5页Infrared and Laser Engineering

基  金:国家电网公司科技项目(无人飞行器巡检技术研究)

摘  要:利用无人机进行输电线路巡检是近几年国内外研究的热点技术之一,其优点是在无需拉闸断电的情况下,即可对输电线路进行检测,对其故障进行判别。根据输电线路设备的特征,应用图像处理与模式识别技术,提出了一种识别绝缘子、防震锤和输电塔的方法。该方法先采用中值滤波、膨胀和腐蚀等方法对灰度化后的航拍图像进行预处理,然后提取预处理后图像的小波特征值,最后采用AP(Affinity Propagation)聚类方法对目标图像进行分类与识别。实验结果表明,所提出的方法能够有效的识别绝缘子、防震锤和输电塔等目标,具有较好的鲁棒性和准确性。In recent years, the use of unmanned aerial vehicle(UAV) for power transmission line detection is a hot technology, and it can detect the transmission line and discriminate the failure without power off. According to the features of power transmission line equipments, a method of equipments recognition based on image processing and pattern recognition was put forward. It preprocessed the aerial images by median filtering, dilating and eroding. Then, wavelet eigenvalues of preprocessed images were calculated. Finally, the objects, such as insulator, vibration damper and transmission tower, were classified and recognized by affinity propagation (AP) clustering algorithm. The results of experiments show that this method can recognize the insulator, vibration damper and transmission tower, and it has better robustness, accuracy and validity.

关 键 词:目标识别 小波特征 AP聚类 无人机 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象