基于伪谱展开的抛物型系统镇定与边界观测研究(英文)  

Pseudospectral expansion-based model reduction for control and boundary observation of unstable parabolic partial differential equations

在线阅读下载全文

作  者:许超[1] 任志刚[1] 欧勇盛[2] Eugenio SCHUSTER 于欣[4] 

机构地区:[1]浙江大学智能系统与控制研究所工业控制技术国家重点实验室,浙江杭州310027 [2]中国科学院深圳先进技术研究院,广东深圳518055 [3]理海大学机械工程系,美国宾夕法尼亚州伯利恒市10085 [4]浙江大学宁波理工学院信息与计算科学系,浙江宁波315100

出  处:《控制理论与应用》2013年第7期793-800,共8页Control Theory & Applications

基  金:supported by the National Natural Science Foundation of China(No.F030119);the Natural Science Foundation of Zhejiang Province(Nos.Y1110354,Y6110751);the Natural Science Foundation of Ningbo(No.2010A610096)

摘  要:模型截断设计方法在无限维系统控制中得到广泛的应用,但是其自身存在信息丢失的缺陷而限制了控制器对高频扰动抑制的性能.本文研究具有内部和Neumann边界控制的抛物型系统,其中系统采用边界测量.内部控制采用比例反馈形式,其中反馈增益核由Sturm-Liouville系统稳定性分析来待定;类似地,边界反馈的设计也采用待定反馈增益核的方式,最终对描述系统稳定性的Sturm-Liouville系统采用伪谱方法进行求解.数字仿真结果表明了该方法的有效性.The reduce-then-design approach is widely used for controller synthesis of infinite dimensional systems.A drawback of the reduce-then-design method is the inherent loss of information due to the truncation before control design.Moreover,the order of the model truncation is a trade-off between model accuracy and real time computation.The stabilization of an unstable linear parabolic partial differential equation(PDE) system with both Neumann boundary control and interior control is considered in this work.Point output measurement is available at one end of the physical domain.A proportional state feedback is proposed for the interior control with a symmetric kernel function,and the pseudospectral method is used to solve the stability conditions governed by the Sturm-Liouville systems.In addition,an observer is designed using the point measurement at one end of the physical domain,and used to propose an observer–based feedback controller for the PDE system.Both controller and observer gains are designed numerically to make the eigenvalues of the associated Sturm-Liouville problems stable.Simulations show the effectiveness of the proposed controller.

关 键 词:截断再设计 设计再截断 伪谱展开 抛物型偏微分方程 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象