检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《现代电子技术》2013年第15期108-111,共4页Modern Electronics Technique
基 金:国家863计划项目(2012A006402)
摘 要:针对基于ELM学习算法的单隐含层前馈神经网络需要较大的网络规模、影响网络泛化能力的问题,基于新皮层内神经元的连接特点,在前馈神经网络中引入不同层神经元之间的跨越连接,构造跨越前馈神经网络。同时,基于ELM学习算法设计适用于跨越前馈神经网络的学习算法,提高网络的学习能力。Image Segmentation多分类问题及直线一级倒立摆系统控制的实验研究表明,该方法能够提高网络的学习能力,具有明显的优势。The single-hidden layer feedforward neural network (SLFN) based on ELM needs larger-scale network structure to solve practical applications, which will influence the generalization capability. In order to solve the problem, a span feedforward neural network (SFN) is proposed based on the characteristic of neocortex neurons. The span connections between any two non-adjacent layers were introduced into this network. At the same time, an improved learning algorithm based on ELM is presented, the proposed approach of span feedforward neural network and improved ELM learning algorithm is used for some benchmark problems. The study on Image Segmentation multi-classification problem and linear 1-stage inverted pendulum system control show that the proposed approach performs better than SLFN and ELM, and it could improve the learning ability of the nerwork.
分 类 号:TN711.34[电子电信—电路与系统] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222