检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学防空反导学院,陕西西安710038 [2]95824部队,北京100195
出 处:《计算机工程与设计》2013年第8期2872-2876,共5页Computer Engineering and Design
基 金:国家自然科学基金项目(60975026);陕西省自然科学基金项目(2007F19)
摘 要:针对离散二进制粒子群(binary particle swarm optimization,BPSO)算法在解决SVM集成选择问题时容易早熟的问题,提出了一种文化算法架构下的多种群协作算法(Ca-MultiPop)。结合BPSO算法的快速演化能力,利用遗传算法(genetic algorithm,GA)增加种群的多样性;在两种进化算法中使用不同的适应度函数,兼顾了集成精度和基分类器之间的差异性。仿真结果表明,该算法在计算精度方面相对于BPSO算法在解决SVM集成选择问题时有所提高。For the premature problem of BPSO algorithm in solving SVM selection ensemble,a multiple population collaboration algorithm in the framework of culture algorithm is proposed.BPSO's premature is avoided by the hybrid of BPSO's quick evolvement and GA's diversity of populations.Meanwhile,different fitness functions are used in BPSO and GA to take account of the difference between ensemble precision and base classifiers.Simulation results show that the algorithm proposed is superior to BPSO algorithm in precision and efficiency when solving SVM selection ensemble problem.
关 键 词:文化算法 离散二进制粒子群算法 遗传算法 支持向量机 选择集成
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26