检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏科技大学电信学院,镇江212003 [2]镇江高等专科学校电子与信息系,镇江212003 [3]湖南第一师范学院科研处,长沙410002
出 处:《科学技术与工程》2013年第22期6605-6609,6624,共6页Science Technology and Engineering
基 金:国家自然科学基金项目(F020704);湖南省教育厅科学研究项目(10C0526;11C0280)资助
摘 要:为了有效识别声纳信号,提出一种基于连续数据量化的声纳传感器数据识别方法。首先用声学传感器采集数据;其次运用数据离散化方法,有效地将采集到的数据进行连续数据离散化;最后,通过数据挖掘技术(C4.5/C5.0决策树、SVM和Naive-Bayes分类器)对离散后的声纳信号数据进行分类识别。实验首先在UCI数据集上进行Naive-Bayes分类预测来评价提出离散化方法的性能,得到了较好的效果。其后,通过声学传感器收集到的Sonar数据集进行实验。结果表明,新的离散化方法提高了四个分类器的识别精度,表明该声纳传感器数据识别技术是非常有效的。In order to effectively recognize sonar signals,a sonar sensor data recognition method based on discretization method was presented.First,this technique was based on the data sampled by acoustic sensors.Second,a novel data discretization method was used to effectively discretize continuous data.Finally,the discretized sonar signals data were classified and recognized by data mining techniques,i.e.,C4.5 / C5.0 decision tree,SVM and Naive-Bayes classifiers.The performance of the proposed discretization method by building Naive-Bayes classifier on UCI data set is first evaluated.Experimental results demonstrate that the proposed discretization method improves the classification ability of Naive-Bayes classifier.In addition,the new discretization method can improve the accuracy of four classifiers on sonar data set collected by acoustic sensors,and this shows that the sonar sensor data recognition technique was very effective.
分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33