局部测地距离估计的增量等距特征映射算法  被引量:3

Incremental ISOMAP Method Based on Locally Estimated Geodesic Distance

在线阅读下载全文

作  者:吴文通[1] 李元祥[1] 韦邦合 郑思龙[1] 

机构地区:[1]上海交通大学航空航天学院 [2]空军94969部队保障部

出  处:《上海交通大学学报》2013年第7期1082-1086,共5页Journal of Shanghai Jiaotong University

基  金:国家自然科学基金资助项目(41174164;61174196)

摘  要:基于经典等距特征映射(ISOMAP)算法易受噪声干扰和邻域大小影响,采用局部测地距离估计输入数据点的初始邻域,并结合增量学习思想,提出一种基于局部测地距离估计的增量ISOMAP算法进行降维,以提高ISOMAP算法的分类能力.人脸识别试验表明,该算法识别性能优越,对噪声和几何形变具有鲁棒性.The classical ISOMAP(isometric feature mapping) method is prone to suffer from the noise and the size of neighborhood.A novel method called "Incremental ISOMAP" based on locally estimated geodesic distance for dimensionality reduction was presented.First,this method assumed that the neighborhood of a point located at the highly twisted placed of the manifold might not be linear so that its neighbors should be determined by geodesic distance.Then,incremental learning was used to replace the batch mode in pattern recognition,aiming to enhance the ability of real time.The proposed method is simple,general and easy to deal with high-dimensional data.The experimental results on face recognition show that the method is efficient and robust.

关 键 词:流形学习 等距特征映射 增量学习 局部测地距离 降维 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP391[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象