检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2013年第15期6-9,共4页Computer Engineering and Applications
基 金:中航工业产学研创新项目(No.Cxy2010xG18)
摘 要:为了构造高维下的近似模型,将最小二乘支持向量机(LS-SVM)引入切割高维模型表示(Cut-HDMR),提出了SVM-HDMR高维非线性近似模型构造法,给出了相应的自适应采样和模型构造算法。该方法利用Cut-HDMR将高维问题转化为一系列低维问题,用LS-SVM求解这些低维问题。数值算例的测试结果表明该方法具有较好的近似精度,且与传统近似方法相比极大地降低了计算成本,从而更适用于高维工程问题的求解。In order to construct approximation model for high dimensional problems, Least Squares Support Vector Machine (LS-SVM) is introduced into High Dimensional Model Representation (HDMR), and a modified approximation model con-struction method called SVM-HDMR for high dimensional nonlinear problems and corresponding adaptive sampling and model construction algorithm are proposed. This method transforms high dimensional problem into a series of low dimensional problems using Cut-HDMR, and then these low dimensional problems are solved using LS-SVM. The results of numerical examples show that the new method has good approximation quality and reduces computational expense dramatically, so it is more suitable for high dimensional problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222