基于自适应排斥因子的改进粒子群算法  被引量:5

Improved particle swarm optimization based on adaptive rejection factor

在线阅读下载全文

作  者:陈明[1] 刘衍民[1,2] 

机构地区:[1]遵义师范学院数学与计算科学学院,贵州遵义563002 [2]同济大学经济与管理学院,上海200438

出  处:《计算机应用》2013年第8期2269-2272,共4页journal of Computer Applications

基  金:中国博士后基金资助项目(2012M520936);上海市博士后基金资助项目(12R21416000);贵州省科学技术基金资助项目(黔科合J字[2012]2340;LKZS[2012]10);遵义师范学院科研基金资助项目(2012BSJJ19);遵义师范学院红色化资源开发与区域经济研究中心项目(ZE2012007);贵州省高校优秀科技创新人才支持计划资助项目(黔教合KY[2012]104号)

摘  要:基本粒子群算法在求解复杂的多峰问题时,由于存在较多的局部最优解,算法极易出现早熟现象。为克服这一缺陷,采用蒙特卡洛(Monte Carlo)方法模拟了种群飞行轨迹,得出种群极易陷入局部最优解的原因;在此基础上,通过定义粒子间距离、粒子间最大距离和粒子间平均距离,提出一种自适应控制粒子自身最优位置和种群最优位置间距离的排斥因子(ARF),来提升种群跳出局部最优的能力。为测试提出策略的有效性,在60次独立运行时,基于ARF的改进PSO算法(ARFPSO)在Rosenbrock,Ackley和Griewank函数上所获得的最好值分别为53.82,2.1203和5.32E-004,都优于其他两种对比算法,这表明ARFPSO能有效地跳出局部最优解;算法的复杂度分析表明引入的策略没有增加计算复杂度。As the multimodal complex problem has many local optima,it is difficult for the basic Particle Swarm Optimization(PSO) to effectively solve this kind of problem.To conquer this defect,firstly,Monte Carlo method was used to simulate the fly trajectory of particle,and the reason for falling into local optima was concluded.Then,by defining distance,average distance and maximal distance between particles,an adaptive control factor named Adaptive Rejection Factor(ARF) for controlling local optimum position and global optimum position was proposed to increase the ability for escaping from local optima.In order to test the proposed strategy,three test benchmarks including Rosenbrock,Ackley and Griewank were selected to conduct the analysis of convergence property and statistical property.The 60 times independent runs show that the improved PSO based on ARF(ARFPSO) has the best value of 53.82,2.120 3 and 5.32E-004,which is better than the both contrast algorithms.The results show that ARFPSO can effectively avoid premature phenomenon,and the complexity analysis of the algorithm also shows that the introduced strategy does not increase computational complexity.

关 键 词:粒子群算法 自适应排斥因子 蒙特卡洛模拟 多峰问题 局部最优解 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象