检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]滨州学院航空信息技术研发中心,山东滨州256603
出 处:《计算机应用》2013年第8期2355-2358,共4页journal of Computer Applications
基 金:滨州学院科研基金资助项目(BZXYG1214)
摘 要:基于一般化的模糊划分GIFP-FCM聚类算法是模糊C均值算法(FCM)的一种改进算法,一定程度上克服了FCM算法对噪声的敏感性,但由于其没有考虑图像的邻域信息,对含有较大噪声的图像分割效果不理想。为此,提出将局部隶属度和局部邻域信息等引入到GIFP-FCM算法的目标函数中,通过重新计算每个像素的局部隶属度和邻域信息,较好地克服了噪声影响。利用该算法对合成图像、脑图分割的实验结果表明,对于含有高斯噪声、椒盐噪声和混合噪声的图像,新算法得到的划分系数值最大,划分熵最小,是一种去噪效果较好的图像分割算法。As an improved algorithm of Fuzzy C-Means(FCM),generalized fuzzy c-means algorithm with improved fuzzy partitions(GIFP-FCM) can reduce the influence of image noises on image segmentation to some extent.However,since the neighbor information is not taken into consideration,GIFP-FCM cannot work well on image with much noises.In order to solve this problem,a new objective function was established with neighbor information and local membership.Every pixel with local membership and neighbor information was recomputed to overcome the influences of noises.The experimental results on synthesized images and brain images show that the proposed algorithm can get the maximum partition coefficient and the minimum partition entropy,which shows the effectiveness of the proposed algorithm.
关 键 词:图像分割 模糊C均值 邻域信息 鲁棒性 空间信息
分 类 号:TN911.73[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.206.232