检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥师范学院公共计算机教学部,合肥230601
出 处:《计算机工程》2013年第8期274-276,284,共4页Computer Engineering
基 金:安徽省高等学校省级自然科学基金资助项目(KJ2010B162;KJ2010A283)
摘 要:行人检测系统难以同时具有高检测率、低误报率和较快的检测速度。为解决该问题,提出一种基于快速级联分类的行人检测系统。该系统包括预处理和分类检测2个部分,在分类检测阶段,利用AdaBoost算法选取部分最优的特征,通过固定训练样本的误报率,并结合串联分类器的优点,设计快速级联分类器(FastCascade),其中,单特征分类器使用快速排序策略,以提高系统的整体性能。仿真结果表明,该FastCascade的接收者操作特征曲线下面积、F-measure和G-mean结果均高于传统的AdaBoost算法、UnderSampling算法和EasyEnsemble算法。Due to the existing pedestrian detection system can not meet the requirement of high detection rate,low false positive rate and fast detection,a pedestrian detection system based on fast cascade classification is proposed.This system consists of pretreatment and classification detection.In the classification detection phase,it selects parts of the optimal features by AdaBoost algorithm,fixes the false alarm rate of the training samples and designs a fast cascade classifier combining the advantage of the serial connected classifier.The single feature classifier uses the quick sort strategy to redesign which improves overall system performance.Simulation results show that the Area Under Receiver Operating Characteristic Curve(AUC),F-measure and G-mean results of the FastCascade are higher than traditional AdaBoost algorithm,UnderSampling algorithm and EasyEnsemble algorithm.
关 键 词:行人检测 快速级联 不平衡分类 特征选择 分类器
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117