检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛建新[1] 张淑娟[1] 孙海霞[1] 周靖博[1]
出 处:《农业机械学报》2013年第8期169-173,共5页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金资助项目(31271973);高等学校博士学科点专项科研基金资助项目(20101403110003);山西省自然科学基金资助项目(2012011030-3)
摘 要:基于可见/近红外光谱技术探讨利用软化指标对不同货架期沙果进行分类的可行性。以SNV为最优预处理结合PLS建立软化指标模型,经优化后其校正和预测模型的决定系数R2分别为0.847和0.813。证实软化指标与光谱数据之间存在很高的相关性,可以以软化为指标对不同货架期的沙果进行分类。分别采用非线性的LS-SVM和线性的PLS-LDA建立分类模型,结果表明:利用LS-SVM所建模型得到的效果要优于PLS-LDA模型,其正确识别率和正确拒识率都达到了94%。The classified feasibility of Malus asiatica fruit by using near-infrared spectroscopy(VIS /NIR spectrometer) and softening index during different shelf life was analyzed.A mathematical model was established by combining partial least square(PLS) and standard normalized variate(SNV) which was regarded as the best pre-processing technology.The determination coefficients(R2) of calibration set and prediction set were 0.847 and 0.813 respectively,which illustrated that there was a high correlation between spectrum and the softening index.It showed that the softening index could be used to classify Malus asiatica samples during different shelf life.The LS-SVM and PLS-LDA were applied to build classification models,respectively.The results indicated that non-linear LS-SVM model was more suitable for classification of Malus asiatica samples than linear PLS-LDA model.The average correct recognition rate and average correct rejection rate were above 94%.
分 类 号:S123[农业科学—农业基础科学] S661.3
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222