检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张达[1] 金立军[1] 胡娟[1] 夏晶[1] 段绍辉 姚森敬
机构地区:[1]同济大学电子与信息工程学院,上海201804 [2]深圳供电局有限公司,深圳518010
出 处:《系统仿真学报》2013年第9期2216-2221,2229,共7页Journal of System Simulation
基 金:国家自然科学基金(51177109)
摘 要:提出基于图像信息决策级融合的绝缘子污秽状态识别方法。对绝缘子图像分别在RGB和HSI色彩空间计算特征量,根据Fisher准则进行特征选择,得到可以有效表征污秽状态的特征量,为了提高分类器的运算速度和准确性,利用核主元分析(KPCA)进行特征提取,在RGB和HSI色彩空间各得到一组三维核主元向量,使用径向基神经网络(RBFNN)分别在RGB和HSI色彩空间进行污秽等级识别,利用D-S证据理论对识别结果进行决策级融合,实现绝缘子污秽等级的识别。实验结果表明该方法可以显著提高识别正确率,可为输电线路绝缘子故障诊断提供依据。An insulator contamination grades recognition method based on decision fusion of image information was proposed. Features of RGB and HS1 color spaces were calculated separately. Meanwhile, feature selection based on Fisher criterion was carried out to obtain features which have the ability to represent the contamination grades efficiently. In order to improve the calculation speed and precision of classifier, kernel principal component analysis (KPCA) was adopted to extract three-dimensional kernel principal features in both RGB and HS1 color spaces. Radial basis function neural network (RBFNN) was used to identify the contamination grades in RGB and HSI color spaces separately. And then, D-S theory was adopted to achieve the decision fusion and realize the high accuracy identification of contamination grades. Results of the experiments indicate that the proposed method can improve the precision of identification significantly and provide basis for fault diagnosis of line insulators.
关 键 词:污秽状态 决策级融合 FISHER准则 核主元分析 径向基神经网络
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225