检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁雷明[1] 孙力[1] 林颢[1] 韩恩[1] 刘海凌[1] 蔡健荣[1]
机构地区:[1]江苏大学食品与生物工程学院,江苏镇江212013
出 处:《光谱学与光谱分析》2013年第9期2387-2391,共5页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(30771243);江苏省普通高校研究生科研创新计划项目(1221360037)资助
摘 要:为评判近红外光谱技术对柑橘糖度的无损检测结果能否满足消费者感官需求并在此基础上利用变量筛选方法简化近红外光谱柑橘糖度模型。设计了近红外光谱采集与感官品尝试验。单因素方差分析感官品尝结果表明,消费者对柑橘糖度的适应度存在个体差异,但不受性别影响;剔除异常样本组并计算柑橘糖度最低感官品尝的均方根偏差(RMSED)为0.633。为使近红外光谱检测结果满足消费者需求,要求光谱模型的预测均方根误差(RMSEP)小于RMSED,并结合光谱预处理与变量筛选方法,得到SPA-MLR模型性能最佳,预测相关系数(Rp)为0.86、RMSEP为0.567,耗时仅6.8ms,其结果既可满足消费者的感官需求,也使模型得到简化,为今后在线检测提供依据。The prediction of sugar content(SC)in citrus by near-infrared spectroscopy(NIRS)and sensory test was investigated the validation whether the result of non-destructive determination methods by NIRS can meet the request of consumers’sensory or not,and the simplification of the prediction model of NIRS for citrus’s SC with variables selection on the basis of meeting their demands.Result of the latter analyzed by one-way ANOVA shows that there was a significant difference influenced by individual diversity,but not by gender.After excluding the sensuous outliers,root mean standard error of deviation(RMSED)of every participator was calculated and the minimum equaled to 0.633,which was chosen as borderline of NIR model’s RMSEP to meet the sensory request.Then,combined with spectral preprocessing and variables selection methods,SPA-MLR model was obtained by its robustness with Rp=0.86,as well as RMSEP=0.567for prediction set,furthermore,prediction time just costs 6.8ms.The achievement that not only meets the customers’sensory,but also simplifies the prediction model can be a good reference for real time application in future.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145