检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东莞理工学院计算机学院,广东东莞523808 [2]东莞职业技术学院计算机工程系,广东东莞523808 [3]北京市气象局气候中心,北京100089
出 处:《激光与光电子学进展》2013年第9期56-62,共7页Laser & Optoelectronics Progress
基 金:国家973计划(2013CB733405);国家自然科学基金(41175015)
摘 要:在传统的基于表面积的图像分形维数计算中,不同尺度下的表面积计算均在原图像中进行。这与图像细节随空间尺度的变化而变化的事实不符,据此计算的同类地物的分数维变化范围较大,对基于分形的图像分割、分类产生不利影响。针对这一问题,提出一种基于面积加权的快速插值算法来模拟不同尺度下的遥感图像,进而计算图像的分数维。实验结果表明,对于大小为512pixel×512pixel的标准Lena图像来说,新算法的插值速度提高10倍以上,且得到的分数维具有更小的类内方差以及更好的抗噪性,因而更适用于基于分形的遥感图像分割、分类。All computation of surface area of images in various scales is performed in the original image by conventional computing method of fractal dimension. The algorithms are inconsistent with the fact that the details of image could change when the metric scale varies, as a result, the span of the fractal dimension in the same kind of ground object is too big and goes against the image segmentation and image classification. To solve this problem, a fast interpolation algorithm based on area weight is put forward to simulate the images with various scales, which is used to calculate the fractal dimension of image. Experimental results show that the proposed method speeds up to 10 times faster and has less variance within clusters than the conventional method according to the standard Lena image. In addition, it can resist image noise well. Therefore, the proposed algorithm is applicable to image segmentation or image classfication.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.211.72