检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学信息与控制工程学院,西安710055 [2]中国农业科学院植物保护研究所,北京100193
出 处:《计算机工程与应用》2013年第17期53-57,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.31170393)
摘 要:基因表达式编程(GEP)算法是一种具有强大函数发现能力的新型进化算法。GEP在函数发现时如何确定合适的数值常量对算法的性能具有很大影响。提出了一种基于协同进化基因表达式编程的函数发现算法(GEP-DE),该算法的最大改进在于一种新的常量优化方法:在每一代中将函数发现的过程分为两个阶段:第一阶段,由标准GEP算法结合固定常量集确定函数结构;第二阶段,使用差分进化算法(DE)对第一阶段得出的函数结构的常量进行优化。实验结果表明,GEP-DE算法比重要文献中的常量处理方法其效果有较大提升,并且算法的综合性能也优于最新重要文献提出的GEP算法。Gene Expression Programming(GEP) is a powerful evolutionary algorithm widely used in function mining, and laow to determine numeric constants has important influence to the performance of GEP. A novel approach of optimizing numeric con-stants based on co-evolutionary Gene Expression Programming (GEP-DE) is proposed in this paper. The main improvement in GEP-DE is to give a novel numeric constants optimization method, where the evolutionary process is divided into 2 phases in each generation:in the first phase, GEP focuses on optimizing the structure of function expression, and in the second one, DE focuses on optimizing the constant parameters. The experimental result on function mining problems shows that the performance of GEP-DE is better than that of the state-of-the-art GEP variants.
关 键 词:进化计算 函数发现 常量优化 差分进化 协同进化
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.200.8