检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫钧华[1] 陈少华[2] 许俊峰[1] 储林臻[1]
机构地区:[1]南京航空航天大学航天学院,南京210016 [2]中国电子科技集团公司第二十八研究所
出 处:《中国惯性技术学报》2013年第4期517-523,共7页Journal of Chinese Inertial Technology
基 金:国家自然科学基金(41101441);南京航空航天大学基本科研业务费专项科研项目(NN2012083;NS2010214;NP2011048)
摘 要:针对单一图像源下目标跟踪精度不高的问题,利用跟踪状态下的目标存在于可见光与红外图像中的特征对连续自适应均值移动跟踪算法做出改进。首先选取可见光图像的“颜色梯度背投影”作为改进的目标模型,选取红外图像的“灰度梯度背投影”作为改进的目标模型;然后根据可见光序列图像和红外序列图像各自进行连续自适应均值移动跟踪算法得到的对应的口‘系数判定两种图像跟踪的效果,对两种图像的权重进行自适应调整,得到这两种图像的特征级融合图像和跟踪结果。实验结果表明,对于320像素×240像素的可见光和红外图像,基于可见光与红外图像特征融合的目标跟踪算法在复杂背景下能够较准确的跟踪目标,目标跟踪精度为0.5像素,跟踪速度为30~32ms/帧。Aiming at the problem that the accuracy of tracking object is not high when with a single image source, CAMShift(Continuously Adaptive Mean Shift) tracking algorithm is improved by using different characteristics of the tracked target in the visible images and infrared images. Firstly, "color- gradient back projection" is selected as the improved target model in visible image, and "gray-gradient back projection" is selected as the improved target model in infrared image. Then the coefficient of qi which is got by using the improved CAM Shift tracking algorithm in visible images and infrared images respectively is used to judge the effect of the two images tracking. The weights of two images are adjusted adaptively by the coefficient of q^i. Finally, the feature fusion image and the location of object are got according to the respective weight. The experimental results show that, for visible and infrared image of 320pixel×240pixel, the object tracking algorithm which is based on feature fusion by visible images and infrared images can get much accurate location of tracking target under complex background in which the accuracy of tracking object is 0.5pixel, and the velocity of tracking object is 30-32 ms/frame.
关 键 词:目标跟踪 图像特征融合 可见光图像 红外图像 连续自适应均值移动跟踪算法
分 类 号:TN391[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38