检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶新民[1] 张冬雪[1] 郝思媛[1] 徐鹏[1]
机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150001
出 处:《振动与冲击》2013年第16期30-36,共7页Journal of Vibration and Shock
基 金:国家自然科学基金面上项目(61074076);中国博士后科学基金(20090450119);中国博士点新教师基金(20092304120017);黑龙江省博士后基金(LBH-Z08227);黑龙江省教育厅项目(11555009)
摘 要:在故障诊断领域中,对传统支持向量机(SVM)算法在数据失衡情况下无法有效实现故障检测的不足,提出一种基于谱聚类下采样失衡数据下SVM故障检测算法。该算法在核空间中对多数类进行谱聚类,然后选择具有代表意义的信息点,最终实现样本均衡。将该算法应用在轴承故障检测领域,并同其他算法进行比较,试验结果表明所建议的算法在失衡数据情况下较其他算法具有较强的故障检测性能。In fault diagnosis application,the performance of traditional support vector machine(SVM) drops significantly when it is applied to the problem of learning from imbalanced datasets where the fault instances heavily outnumbers the normal instances.To address this problem,a novel fault detection SVM approach was proposed based on spectral clustering combined with SVM under unbalanced samples.In order to classify the unbalanced samples correctly,majority of instances was clustered using spectrum clustering in kernel space for resampling reprentative samples,so as to balance the training samples and enhance the classification performance.The proposed algorithm was applied in fault detection of bearings and the results were compared with those by other methods.The experimental results show that our approach achieves better detection performance than other methods.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222