基于SURF算法和Kalman预测的运动目标跟踪  被引量:5

Moving Target Tracking Based on the SURF Algorithm and Kalman Forecast

在线阅读下载全文

作  者:宿德志[1] 王坤[1] 王玉良[1] 赵文飞[1] 

机构地区:[1]海军航空工程学院基础部,山东烟台264001

出  处:《海军航空工程学院学报》2013年第4期378-382,共5页Journal of Naval Aeronautical and Astronautical University

摘  要:SURF(Speeded Up Robust Feature)特征提取方法是SIFT(Scale Invariant Feature Transform)算法的改进,具有速度快和精度高等特点,但其对于较大尺寸图像的匹配速度仍然有待提高。文章提出了一种将基于SURF特征匹配算法与卡尔曼滤波相融合的目标跟踪算法,该算法用特征点的中心近似目标最佳位置;通过卡尔曼滤波预测出当前的目标位置,建立自适应匹配窗口;最后,应用SURF算法提取窗口内的特征向量进行匹配。实验表明,该算法在目标发生大尺度旋转和缩放、部分遮挡时能够稳定跟踪,其跟踪速度比SURF算法有很大的提高。In this paper, SURF (Speeded Up Robust Feature) algorithm is used for target tracking. SURF algorithm has properties of fast running and high precision, which is modified from SIFT (Scale Invariant Feature Transform) algorithm. However, it is difficult to deal with the pictures of large size. In this paper, a new method for target tracking had was proposed, which is combine the SURF algorithm with kalman filter. In the proposed algorithm, the center is used to compute the target displacement, and then target position was doped out by kahnan filter to build the adapted window. Finally, the SURF algorithm was used to extract target features and matching them. Experimental results showed that this method had strong robustness to zoomed, rotated and shielded of the target, and run faster than SIFT algorithm.

关 键 词:SURF算法 目标跟踪 图像匹配 特征提取 卡尔曼预测 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象