检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学防空反导学院,西安710051 [2]空军驻上海地区军事代表室,上海200030
出 处:《计算机工程》2013年第9期170-173,177,共5页Computer Engineering
摘 要:针对直觉模糊c-均值(IFCM)聚类算法易陷入局部最优的问题,从适应度值标定和群体多样化2个方面对遗传算法(GA)进行优化,并将优化后的GA与IFCM算法相结合,提出一种改进的IFCM算法用于入侵检测。优化后的GA具有更优良的全局寻优特性,与IFCM算法结合后,可避免算法陷入局部最优。在KDD CUP99数据集上的仿真结果表明,与IFCM算法相比,改进算法能有效提高聚类精度和检测效率。Concerning that the Intuitionistic Fuzzy c-means(IFCM) clustering algorithm has a deficiency of easily falling into a local optimum, an improved IFCM which combines the traditional IFCM with the upgraded Genetic Algorithm(GA) is proposed. The traditional GA is upgraded from two aspects : the fitness standardization and the group diversification. The upgraded GA is more effective in global optimization, which can overcome the IFCM's shortcoming of local optimum. Then the improved IFCM algorithm is innovatively practised in intrusion detection, and contrastive experiments on data sets KDD CUP99 show that, compared with IFCM algorithm, this algorithm advances the clustering precision effectively and has good reliability and feasibility.
关 键 词:直觉模糊c-均值 聚类 局部最优值 遗传算法 全局寻优 入侵检测
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222