检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科技与管理》2013年第5期90-94,共5页Science-Technology and Management
基 金:上海市重点学科基金项目(S30504;S30501)
摘 要:协同过滤是目前电子商务推荐系统中使用最广泛最成功的一种个性化推荐算法。受数据稀疏性影响,传统协同过滤算法在较小共同评分项集上计算出的相似度不能准确反映用户间的相似关系,严重影响了推荐系统的精度。针对该问题,在分析共同评分分布及其与相似度关系的基础上,提出了基于共同评分的协同过滤算法,无须计算相似度,直接将共同评分作为最近邻选择标准。MovieLens实验表明该算法能明显提高预测结果的准确性和覆盖率。Collaborative filtering is one of the most extensive and successful personalized recommendation algorithm in e-commerce recommendation system. Affected by data sparsity, the traditional collaborative filtering algorithms does not reflect the interest similarity of uses calculating similarity between users on the smaller set of common rated items accurately, seriously affecting the accuracy of recommendation system. To solve this problem, collaborative filtering algorithm based on co-ratings was proposed by analyzing the distribution of co-ratings and relationship be- tween co-ratings and similarity, directly using co-ratings as a criterion to select nearest neighbor without calculating similarity. Experiments on MovieLens datasets show that the algorithm can make a substantial increase in prediction accuracy and recommendation coverage.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28