检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁师范大学计算机与信息技术学院,辽宁大连116081
出 处:《计算机应用》2013年第10期2801-2803,共3页journal of Computer Applications
基 金:国家自然科学基金资助项目(61373127);中国博士后科学基金资助项目(20110491530);辽宁省教育厅基金资助项目(L2011186)
摘 要:针对大规模数据的分类问题,将监督学习与无监督学习结合起来,提出了一种基于分层聚类和重采样技术的支持向量机(SVM)分类方法。该方法首先利用无监督学习算法中的k-means聚类分析技术将数据集划分成不同的子集,然后对各个子集进行逐类聚类,分别选出各类中心邻域内的样本点,构成最终的训练集,最后利用支持向量机对所选择的最具代表样本点进行训练建模。实验表明,所提方法可以大幅度降低支持向量机的学习代价,其分类精度比随机欠采样更优,而且可以达到采用完整数据集训练所得的结果。Based on hierarchical clustering and re-sampling, this paper presented a Support Vector Machine (SVM) classification method for large-scale data, which combined supervised learning with unsupervised learning. The proposed method first used k-means cluster analytical technology to partition dataset into several subsets. Then, the method clustered class by class for each subset and selected samples in each clustering center neighborhood to form candidate training datasets. Last, the method applied SVM to train and model for candidate training datasets. The experimental results show that the proposed method can substantially reduce SVM learning cost. Meanwhile, the proposed method has better classification accuracy than random re-sampling method, and can attain about the same classification accuracy of the non-sampling method.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112