基于聚类和小波变换的多光谱图像压缩算法  被引量:5

Multispectral Image Compression Algorithm Based on Clustering and Wavelet Transform

在线阅读下载全文

作  者:梁玮[1] 曾平[1,2] 张华[1] 罗雪梅[1] 

机构地区:[1]西安电子科技大学计算机学院,陕西西安710071 [2]西安石油大学计算机学院,陕西西安710065

出  处:《光谱学与光谱分析》2013年第10期2740-2744,共5页Spectroscopy and Spectral Analysis

基  金:国家"十二五"预研项目(513160702)资助

摘  要:针对多光谱图像压缩算法现存的时空复杂度高、光谱特性利用不充分等问题,研究了多光谱图像的谱间稀疏等价表示及其聚类实现途径,进而设计了一种基于谱间自适应聚类和小波变换的多光谱图像压缩算法。算法利用吸引力传播聚类产生多光谱图像的谱间稀疏等价表示、在低复杂度下去除图像的谱间冗余,使用二维小波变换去除稀疏表示成分的空间冗余,采用分层树集合分割排序算法(SPIHT)进行压缩编码,并通过误差补偿机制提高多光谱图像重建质量。实验表明,该算法在保证较低时间和空间复杂度的基础上,较SPIHT等同类经典压缩算法,在相同的压缩比下,明显提高了重建图像的峰值信噪比,是一种通用有效的多光谱图像压缩算法。Aiming at the problem of high time-space complexity and inadequate usage of spectral characteristics of existing multi- spectral image compression algorithms, an inter-spectrum sparse equivalent representation of multispectral image and its cluste- ring realization ways were studied. Meanwhile, a new multispectral image compression algorithm based on spectral adaptive clus- tering and wavelet transform was designed. The affinity propagation clustering was utilized to generate inter-spectrum sparse e- quivalent representation which can remove inter-spectrum redundancy under low complexity, two-dimensional wavelet transform was used to remove spatial redundancy, and set partitioning in hierarchical trees (SPIHT) was used to encode. The quality of re- construction images was improved by error compensation mechanism. Experimental results show that the proposed approach a thieves good performance in time-space complexity, the peak signal-to-noise ratio(PSNR) is significantly higher than that of sim- ilar compression algorithms under the same compression ratio, and it is a generic and effective algorithm.

关 键 词:多光谱图像 多光谱图像压缩 多光谱图像谱间稀疏等价表示 自适应聚类 小波编码 误差补偿 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象