检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京邮电大学网络体系构建与融合北京市重点实验室,北京100876
出 处:《电视技术》2013年第19期36-41,共6页Video Engineering
基 金:北京邮电大学青年科研创新计划专项课题项目(G470289)
摘 要:为了克服针对特定失真类型的局限性以及避免有监督的学习过程,通过视觉注意模型和边缘信息来构造特征池,提出了一种基于特征池的不区分失真类型以及无监督的无参考图像质量评价算法。该算法不针对特定失真类型,对各种失真类型的图像都能做出较好的评价,从这个角度来说,是一种通用型算法。此外,该算法不需要主观分值的训练,因而又是一种真正的无监督的质量评价算法。而且,在提取空域特征时,考虑了人类的视觉感知特性,认为感兴趣区域以及边缘块会显著地影响人们对图像质量的评价。实验结果表明,该算法性能与人们的主观感知具有较好的一致性。To overcome the shortcomings of distortion-specific algorithms and avoid supervised training,a novel no-reference image quality assessment method based on feature pool constructed by visual attention model and edge information is proposed,which is non-distortion-specific and unsupervised.This approach which doesn't limit itself to one or more specific types of distortions can make a good evaluation to all sorts of distorted images,so it is a general-purpose algorithm from this point of view.Besides,the proposed method doesn't have to train with subjective scores,so it is also a truly unsupervised image assessment algorithm.Furthermore,human visual perception characteristics are taken into account when spatial features are extrated from raw-image-patches and assume that regions of interest and edge blocks could affect image quality dramatically.Experimental results show that algorithm performance has good agreements with humans subjective perception.
关 键 词:无参考 特征池 通用型无监督算法 感兴趣区域 边缘块
分 类 号:TN919.8[电子电信—通信与信息系统] TN911.73[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.232