基于证据理论和支持向量机的烟雾图像检测  

Smoke Image Detection Based on Evidence Theory and Support Vector Machine

在线阅读下载全文

作  者:单桂军[1,2] 胡伟[3] 

机构地区:[1]江苏科技大学电信学院,江苏镇江212003 [2]镇江高等专科学校电子与信息系,江苏镇江212003 [3]湖南第一师范学院科研处,湖南长沙410002

出  处:《电视技术》2013年第19期64-67,共4页Video Engineering

基  金:国家自然科学基金项目(F020704)

摘  要:针对传统烟雾图像检测算法低检测率缺陷,提出一种证据理论和支持向量机相融合的烟雾图像检测算法(DS-SVM)。首先分别提取主方向性状、高低频能量比、烟雾面积增长等3类烟雾特征,然后3类单特征的支持向量机检测结果作为D-S理论的独立证据,构造基本概率指派,最后根据决策规则和判决门限获得烟雾图像的最终检测结果。仿真结果表明,相对于传统检测算法,DS-SVM有效提高了烟雾图像检测率,可以满足不同环境下烟雾图像检测要求。The traditional smoke image detection algorithm has flow accuracy,a smoke image detection algorithm based on multi-feature fusion and support vector machine is put forward.Firstly,the principal direction character,high frequency energy ratio and smoke area growth rate are extracted from smoke suspected regional,and then the recognition results of the three single features of support vector machine is taken as independent evidence,and the basic probability assignment is constructed,and finally the D-S evidence combination rules is used to fuse the decision level,and smoke image detection results are got according to the classification decision threshold.The simulation results show that the proposed method can effectively improve the detection rate of smoke image compared with the traditional methods,which can meet the different requirements under the environment of smoke image detection.

关 键 词:烟雾图像检测 支持向量机 特征提取 证据理论 

分 类 号:TN911.73[电子电信—通信与信息系统] TP391[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象