检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秦蕊[1]
出 处:《杭州师范大学学报(自然科学版)》2013年第5期413-417,共5页Journal of Hangzhou Normal University(Natural Science Edition)
摘 要:本文首先引进了Boolean-like环的一类新的扩张J-Boolean like环,即对任意环R中元素a,b都有(a-a2)(b-b2)∈J(R),这里J(R)为环R的Jacobson根,则环R称为J-Boolean like环.证明了两个定理分别为(1)设D是一个环,C是D的一个子环,R[D,C]是一个J-Boolean like环(a)C,D是J-Boolean like环,(b)J2(C)■J(D).(2)如果B/J(B)是Boolean环,并且B[i]={a+bi|i2=ui+η,a,b,u,η∈B},那么B[i]是J-Boolean like环当且仅当uη∈J(B).This paper defined a new expansion of Boolean-like rings that was a ring R was called J-Boolean like ring when a, b in any ring R satisfied the condition that (a--a2 ) (b--b2 )∈ J(R) and J(R) was the Jacobson radical of ring R. Two theorems was also proved. Let D be a ring, C is a subring of D, then RID,C] is a J-Boolean like ring if and only if (a)C,D are J-Boolean like rings, (b)J2 (C)J(D). If B/J(B) is a Boolean ring, and BEi]= {a'q-biliz =uiq-v,a,b,η∈B } , then B['i] is a J-Boolean like ring if and only if uη∈(B).
关 键 词:Boolean环 Boolean-like环 J-Boolean like环 JACOBSON根 R[D C]环
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38