检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学电子科学与工程学院,长沙410073
出 处:《计算机工程与应用》2013年第21期128-132,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61171135)
摘 要:SAR图像存在动态范围小、对比度差和细节信息不清晰等质量问题,制约了SAR图像的信息获取能力。针对这一问题,提出自适应越渡点的SAR图像模糊对比度增强算法。该算法分析了经典模糊增强方法的局限性,利用SAR图像灰度直方图的分布特性来计算自适应越渡点和模糊对比度增强操作数,实现了SAR图像的自适应对比度增强处理。采用多组实测数据验证该算法,用客观指标评估了增强性能。SAR image always has small dynamic range, low contrast and details are presented in a very low luminance region, which limits the further processing of SAR image. Thus a new fuzzy image contrast enhancement method based on adaptive crossover point is presented. It analyzes the limits of the classical fuzzy enhance method, and proposes the adaptive crossover point and the new enhancement operator to make it adaptive for SAR image by using the features of the image' s histogram. The performances of the method are assessed by a series of experiments.
关 键 词:合成孔径雷达(SAR)图像 模糊理论 自适应越渡点 对比度增强
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7