检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学自动化与电气工程学院,兰州730070
出 处:《计算机工程与应用》2013年第21期230-234,共5页Computer Engineering and Applications
基 金:甘肃省科技支撑计划(科技支甘)项目(No.1011JKCA172);兰州市科技计划项目(No.2011-1-106)
摘 要:为了有效识别出滚动轴承的内圈故障、外圈故障、滚动体故障三种故障类型,提出一种基于经验模态分解EMD的小波包去噪和自适应神经模糊推理系统ANFIS的诊断方法。对故障信号进行去噪预处理,对已处理的信号利用ANFIS进行故障识别。结果表明,采用基于EMD的小波包去噪方法能有效地提高信噪比,在去噪的基础上,采用ANFIS进行故障诊断,诊断结果的误差低,能很好地识别出上述三种故障类型。In order to diagnose rolling bearing' s three fault types more effectively, such as inner race fault, outer race fault and balls fault, a method that Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and wavelet packet de-noising based on Empirical Mode Decomposition(EMD) is proposed. As the signals are often corrupted by noise, so they are de-noised, and preprocessed signals are investigated using ANFIS analysis. The results show that the wavelet packet de-noising based on EMD can improve the Signal-to-Noise Ratio (SNR) effectively. After signals are preprocessed, the result of ANFIS analysis shows that average error is low. It can diagnose the three fault types above-mentioned better.
关 键 词:滚动轴承 经验模态分解 小波包去噪 自适应神经模糊推理系统 故障诊断
分 类 号:TH113.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.158