基于非下采样Contourlet变换的医学图像融合  被引量:5

Medical Image Fusion Based on the Nonsubsampled Contourlet Transform

在线阅读下载全文

作  者:李翠[1] 纪峰[1] 常霞[1] 吴仰玉[1] 

机构地区:[1]北方民族大学信息与计算科学学院信息与系统科学研究所,宁夏银川750021

出  处:《激光与光电子学进展》2013年第11期94-99,共6页Laser & Optoelectronics Progress

基  金:国家自然科学基金(61102008);教育部重点实验室开放基金(IPIU012011006);北方民族大学科研项目(2011Y021)

摘  要:针对多模态医学影像的成像原理,为了弥补各个模态的医学图像的不足,提出了一种基于非下采样Contourlet变换的医学图像融合算法。首先对源图像进行非下采样Contourlet分解,分别得到低频子带系数和高频子带系数,然后对低频子带系数采用区域能量加权的融合规则,高频子带系数则选取区域标准差比例加权作为融合规则,最后进行非下采样Contourlet逆变换,得到融合图像。通过实验对比表明,该算法明显优于小波(Wavelet)、Contourlet、Wavelet+CS(CS为压缩感知)算法,具有更好的融合性能,清晰度更高,是一种可行、有效的图像融合方法。For the imaging principle of multi-modal medical image, in order to make up for the shortage of the various modes of medical images, a novel medical image fusion algorithm is proposed based on the nonsubsampled contourlet transform (NSCT). Firstly, two registered source images are decomposed by the nonsubsampled contourlet transform to obtain the low frequency subband coefficients and high frequency subband coefficients. Secondly, for the low frequency subband coefficients, the fusion principle is based on the weight of local area energy. As for the high frequency subband coefficients, we choose the weight of the area standard deviation ratio as a rule. Finally, the fusion image is obtained by the nonsubsampled contourlet inverse transform. The experimental results show that the proposed method is feasible and effective, and it has better fusion performance and higher definition than the wavelet, contourlet, and wavelet++CS (CS.. compressive sensing) algorithms.

关 键 词:图像处理 医学图像融合 非下采样CONTOURLET变换 标准差 区域能量 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象