3维大脑核磁共振图像隐私信息剔除方法  

Facial De-identification in Three-dimensional Magnetic Resonance Images of Human Brain

在线阅读下载全文

作  者:干可[1] 余艳梅[1] 罗代升[1] 梁子飞[1] 曾鹏[1] 

机构地区:[1]四川大学电子信息学院图像信息研究所,四川成都610065

出  处:《四川大学学报(工程科学版)》2013年第5期51-56,共6页Journal of Sichuan University (Engineering Science Edition)

基  金:美国国家卫生院阿兹海默神经影像倡议(ADNI;NIHGrant U01 AG024904);国家自然科学基金资助项目(81173356)

摘  要:在神经影像研究中,患者的面部特征有时可以通过3维表面重建技术从影像中复原,这使得患者身份隐私信息泄漏存在潜在可能。为了解决这一问题,提出一种自动化面部特征剔除算法,从海量多模态大脑核磁共振影像中自动剔除患者身份相关的面部特征信息。该方法基于一种新提出的多分辨分层特征向量匹配方法来准确定位3维影像中的解剖学点标记,并通这种匹配方法从多模态磁共振影像中确定患者面部特征相关的解剖结构的空间位置,并以此为基础估计出一个最优3维剔除平面来剔除患者面部特征信息。最后,通过实验验证了该方法的有用性和可靠性。In neuroimaging studies,subject's identity can sometimes be recovered from volumetric brain MR images via three-dimensional surface reconstruction or volume rendering techniques and directly leads to the violation of privacy protection regulations in medical applications. To address these concerns,a novel method for facial de-identification was developed to automatically remove facial feature from multi-modality brain MR images. A multi-resolution hierarchical feature vector based matching framework was proposed and applied to accurately locate several facial feature-related key points in the 3D brain MR images. An optimal 3D plane which cut through these detected key points was estimated and used to remove facial voxels from MR images. Experiments were conducted to validate the usefulness and applicability of the proposed method.

关 键 词:核磁共振 大脑 点标记 数据驱动 面部特征 3维重建 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象