检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北农业大学水利与建筑学院,黑龙江哈尔滨150030
出 处:《节水灌溉》2013年第10期38-40,共3页Water Saving Irrigation
基 金:黑龙江省教育厅科研项目<黑龙江省灌区水资源动态预测方法与应用研究>(11551044)
摘 要:中小河流的径流量表现出十分复杂的变化特征,如高度非线性、多时间尺度特征、时频序列,严重影响预测的准确性。由于常规的分析法难以建立有效的预测模型,所以为了提高预测精度,提出了一种改进小波神经网络的来水量预测模型,利用非线性小波函数取代了BP神经网络通常用的Sigmoid函数作为隐含层节点的传递函数,有效地避免神经网络结构设计的盲目性,同时也有更强的学习能力且精确更高。取实例建模分析,并建立BP网络模型与之比较,结果表明,小波神经网络提高了径流量预测精度。The series of runoff in small and medium-sized river display complex features, such as highly non-linear, multi-time scale features which change with the time. This seriously affects the prediction accuracy. Since it is difficult to establish a model based on the regular analysis methods, in order to improve the accuracy, an improved Wavelet-Neural Network model is put forward to predict the water, which uses a non-linear wavelet function as the transfer function of the hidden layer nodes instead of the regular non-linear -Sigmoid function in BP Neural Network and avoids the blindness of the structure design of the Neural Network and get better ability to learn more accurately. Then a model for real-case is established and compared with the BP Neural Network. The result shows that using the improved Wavelet-Neural Network to predict the inflow water is more accurate.
关 键 词:中小河流径流量 SIGMOID函数 小波神经网络 BP神经网络
分 类 号:TV121[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13