结合尺度不变特征变换和Kalman滤波的Mean Shift视频运动目标跟踪  被引量:10

Mean Shift tracking for video moving objects in combination with scale invariant feature transform and Kalman filter

在线阅读下载全文

作  者:朱志玲[1] 阮秋琦[2] 

机构地区:[1]北京交通大学计算机与信息技术学院,北京100044 [2]北京交通大学信息科学研究所,北京100044

出  处:《计算机应用》2013年第11期3179-3182,3243,共5页journal of Computer Applications

基  金:国家自然科学基金资助项目(61172128);国家973计划项目(2012CB316304);教育部创新团队发展计划项目(IRT201206)

摘  要:为解决目标跟踪中运动目标存在较大尺度变化、旋转、快速运动或遮挡时跟踪效果欠佳的问题,提出了一种将尺度不变特征变换(SIFT)特征匹配和Kalman滤波与Mean Shift结合的运动目标跟踪方法。首先,利用Kalman滤波估计目标运动状态,将其估计值作为Mean Shift跟踪的初始位置;然后,当候选目标模型和初始目标模型的相似性测度系数小于某一阈值时,启用SIFT特征匹配寻找目标可能位置,并在该位置处建立新的候选目标模型,同时进行相似性测度;最后,比较两者所得匹配系数,取其中较大者对应的位置作为目标的最终位置。实验结果表明,该算法的跟踪平均误差较单独将Kalman滤波或SIFT特征与Mean Shift结合的跟踪算法减小了约20%。To solve the problem of poor tracking performance when the moving target has a relatively large scale change, rotation, fast-moving or occlusion, an object tracking method combining Scale Invariant Feature Transform (SIFT) matching and Kalman filter with the Mean Shift algorithm was put forward. First, the Kalman filter was used to predict the movement state of the moving target and its estimated value was taken as the initial position of Mean Shift tracking. Then, when the measure coefficient for the similarity of the candidate target model and the initial target model was less than a certain threshold, SIFT feature matching was used to look for the possible position of the target and the new candidate target model was built there, meanwhile, the similarity with the initial target model was measured. Finally, by comparing the two matching coefficients, the position associated with a larger one was selected as the target's final position. The experimental results show that the average tracking error of this algorithm is decreased by about twenty percent than the tracking algorithms only combining the SIFT feature or Kalman filter with the Mean Shift alone.

关 键 词:目标跟踪 尺度不变特征变换算法 KALMAN滤波 Mean Shift 尺度空间 

分 类 号:TP391.413[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象